CITY of NOVI CITY COUNCIL
Agenda Item 5
May 18, 2015

SUBJECT: Approval to award a construction contract for the Beck Road Mid-Block Pedestrian Crossing (north of Cheltenham) and Beck Road Repaving project (Sunnybrook to White Pines Drive) to Florence Cement Company, the low bidder, in the amount of $\$ 249,980$, subject to final review and approval of form of agreement by City Manager's office and the City Attorney.

SUBMITTING DEPARTMENT: Department of Public Services, Engineering Division
CITY MANAGER APPROVAL:

EXPENDITURE REQUIRED	$\$ 249,980$
AMOUNT BUDGETED	$\$ 254,742$
LINE ITEM NUMBER	$204-204.00-974.437$

BACKGROUND INFORMATION:

The City of Novi Non-Motorized Master Plan 2011 identified several locations for potential development of non-motorized crossings of major roads within the City, referred to as midblock crossings. One of these locations was identified and funded in the FY13-14 budget on Beck Road between Cheltenham Drive and White Pines Drive. This location is also part of a future east-west regional pathway north of Nine Mile Road (see attached map).

The area between Cheltenham Drive and White Pines Drive was evaluated to determine the best location to accommodate a mid-block crossing. A properly designed mid-block crossing would help direct pedestrians to cross at a defined location, rather than at random locations, and would help alert approaching vehicles that pedestrians may be present, making the crossing much safer.

Since this is the first mid-block crossing project under the City's jurisdiction, the design process evaluated several improvements, such as refuge islands, illuminated pedestrian beacons, and the location of the crossing relative to adjacent streets and other obstacles. Engineering staff and Spalding DeDecker consulted with other engineers, agencies, research material, etc. to solicit expertise regarding the alternatives appropriate for midblock crossings. SDA performed an analysis to verify that the proposed location is appropriate for a pedestrian crossing. SDA also performed a limited traffic study on Beck Road to evaluate the traffic patterns and help determine the appropriate design for the crossing. The goal of the mid-block crossing is to provide a safe crossing for all users.

In order to facilitate the mid-block crossing for pedestrians, Beck Road will be widened to create a left tum lane between Sunnybrook and White Pines, which is approximately $1 / 4-$ mile in length. This section of Beck Road currently has a PASER rating of 3 and is in need of rehabilitation, so this project will also include milling and overlaying this segment's pavement. The crossing will include proper signage and pavement markings to help increase driver awareness of potential pedestrian conflicts. Street lighting will also be added as part of a contract with DTE (a separate item on this agenda).

Three bids were received and opened on May 6, 2015 following a public bid solicitation period. The lowest responsible bidder is Florence Cement Company. Florence's bid is recommended as being in the best interest of the City as it is responsive (i.e., Florence has complied with all requirements of the bidding instructions) and it is the lowest price. (URS' award recommendation letter including the bid tabulation dated May 11, 2015 is attached). A summary of the three bids received is asfollows:

Contractor	Bid Price (including Crew Days)* $\$ 271,100.00$
Florence Cement Company	$\$ 294,540.00$
Merdo Construction Co.	$\$ 299,325.50$
Wa ren Contractors \& Development	

* Crew Days are included to compare bids, but are not included in the award.

Florence has successfully completed projects for the City in the past and staff recommends award of the contract to Florence.

It is anticipated that this project will be completed by fall 2015.
RECOMMENDED ACTION: Approval to award a construction contract for the Beck Road MidBlock Pedestrian Crossing (north of Cheltenham) and Beck Road Repaving project (Sunnybrook to White Pines Drive) to Florence Cement Company, the low bidder, in the a mount of $\$ 249,980$, subject to final review and approval of form of agreement by City Manager's office and the City Attomey.

	$\mathbf{1}$	$\mathbf{2}$	\mathbf{Y}	\mathbf{N}
Mayor Gatt				
Mayor Pro Tem Staudt				
Council Member Casey				
Council Member Markham				

	$\mathbf{1}$	$\mathbf{2}$	\mathbf{Y}	\mathbf{N}
Council Member Mutch				
Council Member Poupard				
Council Member Wrobel				

Mr. Benjamin Croy, PE, Civil Engineer
City of Novi
26300 Lee BeGole Drive
Novi, Michigan 48375

Re: Recommendation for Award
Beck Road Mid-Block Pedestrian Crossing
SDA Project No.: NV13-011

Dear Mr. Croy:

On May 6, 2015 at 2:00 p.m., construction bids were opened and publicly read at the City of Novi Civic Center for the Beck Road Mid-Block Pedestrian Crossing. The project includes milling and overlay of asphalt pavement, installation of a new pedestrian refuge island, and ADA improvements to existing concrete sidewalk.

The City Clerk's office received three (3) sealed bids for this project, with each bidder considered to be responsive having submitted a bid compliant with all requirements. The apparent low bidder, Florence Cement, submitted a total bid of $\$ 271,100.00$. Following the bid opening, Spalding DeDecker reviewed all of the bids received, verified the calculations, and prepared the bid tabulation for the project (attached).

The bids as a whole were higher than anticipated. Through discussions with the low bidder, it was noted that the anticipated efforts for traffic control in this area were a factor in the higher pricing. Spalding DeDecker finds that Florence Cement is qualified to perform the required construction.

It is our recommendation that the project be awarded to the low bidder, Florence Cement, for the Beck Road Mid-Block Pedestrian Crossing project in the amount of $\$ 249,980.00$, which is the total bid of $\$ 271,100.00$ minus $\$ 21,120.00$ for crew days bid.

Upon award by the City Council, our office will coordinate the completion of the Contract Agreement, Bonds, and Insurance information with Florence Cement.

Very Truly Yours,
SPALDING DEDECKER

Edward Strada, PE
Project Manager

Encl: Bid Tabulation

BID TABULATION - BECK ROAD MID BLOCK PEDESTRIAN CROSSING

CITY OF NOVI
3 Bids received, opened 5/6/15

				Floren	Cement	Merlo	nstruction	Warren	ontracting
No	ITEM	QUANTITY	UNIT	$\begin{gathered} \hline \text { UNIT } \\ \text { PRICE (\$) } \end{gathered}$	AMOUNT (\$)	UNIT PRICE (\$)	AMOUNT (\$)	UNIT PRICE (\$)	AMOUNT (\$)
1	Bonds, Insurance and Mobilization (5\% Max)	1	LS	\$13,000.00	13,000.00	7,000.00	7,000.00	14,900.00	14,900.00
2	Pre-Construction Audio-Visual	1	LS	\$1,500.00	1,500.00	2,000.00	2,000.00	1,100.00	1,100.00
3	Soil Erosion Control Measures	1	LS	\$1,000.00	1,000.00	2,000.00	2,000.00	3,225.00	3,225.00
4	Maintaining Traffic	1	LS	\$15,000.00	15,000.00	25,000.00	25,000.00	32,500.00	32,500.00
5	HMA Surface, Remove, Modified	1,137	SY	\$8.00	9,096.00	7.00	7,959.00	11.00	12,507.00
6	Sidewalk, Remove	1,585	SF	\$1.00	1,585.00	7.00	11,095.00	1.50	2,377.50
7	Concrete Curb and Gutter, Remove	215	LF	\$11.00	2,365.00	15.00	3,225.00	16.00	3,440.00
8	Cold Milling HMA Surface	4,100	SY	\$3.00	12,300.00	3.75	15,375.00	2.70	11,070.00
9	Sewer, Rem, Less than 24 Inch	25	LF	\$16.00	400.00	25.00	625.00	25.00	625.00
10	Culv, End, Rem, Less than 24 Inch	1	EA	\$400.00	400.00	200.00	200.00	200.00	200.00
11	Excavation, Earth	110	CY	\$40.00	4,400.00	25.00	2,750.00	60.00	6,600.00
12	Subrade Undercut (As Needed)	225	CY	\$45.00	10,125.00	40.00	9,000.00	55.00	12,375.00
13	Aggregate Base, 6 inch	440	SY	\$12.00	5,280.00	10.00	4,400.00	8.00	3,520.00
14	Aggregate Base, 10 inch	1,920	SY	\$12.00	23,040.00	16.00	30,720.00	12.50	24,000.00
15	Shoulder, CL II, 4 inch	455	SY	\$8.00	3,640.00	8.00	3,640.00	8.00	3,640.00
16	Conc Pavt, Misc, Nonreinf, 8 inch	17	SY	\$85.00	1,445.00	125.00	2,125.00	85.00	1,445.00
17	Concrete Curb and Gutter, Modified	376	LF	\$40.00	15,040.00	40.00	15,040.00	32.50	12,220.00
18	Driveway Opening, Conc, Det M	130	LF	\$35.00	4,550.00	27.00	3,510.00	35.00	4,550.00
19	Concrete Spillway	8	SY	\$75.00	600.00	20.00	160.00	75.00	600.00
20	HMA Surface Repair	450	SY	\$31.00	13,950.00	40.00	18,000.00	28.00	12,600.00
21	HMA, 3C	45	TON	\$170.00	7,650.00	221.00	9,945.00	250.00	11,250.00
22	HMA, 5E10	490	TON	\$110.00	53,900.00	116.00	56,840.00	92.00	45,080.00
23	Corrugated HMA Divider, Depressed	225	LF	\$10.00	2,250.00	25.00	5,625.00	15.00	3,375.00
24	Pathway Grading		STA	\$2,000.00	3,700.00	1,500.00	2,775.00	1,350.00	2,497.50
25	Concrete Curb, Sidewalk	110	LF	\$20.00	2,200.00	40.00	4,400.00	20.00	2,200.00
26	Sidewalk, Conc, 4 inch	1,175	SF	\$5.50	6,462.50	5.00	5,875.00	5.50	6,462.50
27	Sidewalk, Conc, 6 inch	785	SF	\$7.50	5,887.50	6.00	4,710.00	7.50	5,887.50
28	ADA Detectable Warning Plate	96	SF	\$20.00	1,920.00	30.00	2,880.00	20.00	1,920.00
29	Str Rehab Type 2: Structure Cover Adjust	4	EA	\$400.00	1,600.00	400.00	1,600.00	750.00	3,000.00
30	Str Rehab Type 3: Reconstruct Structure	1	EA	\$900.00	900.00	350.00	350.00	1,500.00	1,500.00
31	Structure Cover, Type A	2	EA	\$600.00	1,200.00	625.00	1,250.00	610.00	1,220.00
32	Structure Cover, Type B	2	EA	\$500.00	1,000.00	650.00	1,300.00	480.00	960.00
33	Structure Cover, Type C	1	EA	\$500.00	500.00	750.00	750.00	450.00	450.00
34	12 Inch RCP	49	LF	\$50.00	2,450.00	50.00	2,450.00	120.00	5,880.00
35	12 Inch RCP End Section w Bar Screen, Complete	3	EA	\$1,600.00	4,800.00	500.00	1,500.00	1,175.00	3,525.00
36	Tap Existing Manhole	1	EA	\$300.00	300.00	225.00	225.00	300.00	300.00
37	Ditching	130	LF	\$15.00	1,950.00	20.00	2,600.00	16.00	2,080.00
38	Sign, R4-7 Keep Right, Modified	2	EA	\$200.00	400.00	100.00	200.00	200.00	400.00
39	Sign, W16-9P Ped Crossing Ahead, Modified	2	EA	\$180.00	360.00	100.00	200.00	200.00	400.00
40	Sign, W11-2 Ped Crossing,Modified	4	EA	\$180.00	720.00	100.00	400.00	200.00	800.00
41	Sign, W16-7P Left Arrow, Modified	2	EA	\$90.00	180.00	100.00	200.00	90.00	180.00
42	Post, Steel, 3 Pound, Modified	4	EA	\$115.00	460.00	300.00	1,200.00	280.00	1,120.00
43	Perforated Steel Square Tube Sign Breakaway Sys	2	EA	\$995.00	1,990.00	1,000.00	2,000.00	1,000.00	2,000.00
44	Plastic Delineator, Round	8	EA	\$75.00	600.00	35.00	280.00	75.00	600.00
45	Pavement Marking, Yellow, 4 Inch	2,595	LF	\$0.55	1,427.25	0.60	1,557.00	0.60	1,557.00
46	Pavement Marking, White, 4 Inch	1,740	LF	\$0.55	957.00	0.60	1,044.00	0.60	1,044.00
47	Pavement Marking, Cross Walk, Recessed, 12 Inch	65	LF	\$10.25	666.25	12.00	780.00	10.50	682.50
48	Pavement Marking, Yellow, 12 Inch	130	LF	\$1.95	253.50	2.00	260.00	2.00	260.00
49	Restoration	1	LS	\$4,580.00	4,580.00	6,000.00	6,000.00	10,000.00	10,000.00
50	Inspection Crew Days*	\$640.00	DAY	33.00	21,120.00	18.00	11,520.00	30.00	19,200.00
OPINION OF PROBABLE CONSTRUCTION COST				\$271,100.00		\$294,540.00		\$299,325.50	

TO: BRIAN COBURN, PE; ENGINEERING MANAGER
FROM: BEN CROY, PE; CIVIL ENGINEER
SUBJECT: BECK ROAD MID-BLOCK CROSSING
DATE: NOVEMBER 5, 2014

The City of Novi Non-Motorized Master Plan 2011 identified several locations for the potential development of non-motorized crossings of major roads within the City, referred to as mid-block crossings. One of these locations was identified and funded in the FY13-14 budget on Beck Road between Cheltenham Drive and White Pines Drive. This location is also part of a future east-west regional pathway north of Nine Mile Road (see attached Figures 3.11 and 3.2 F). Beck Road is a 2 -lane road with a posted speed limit of 45 miles per hour and an average daily volume of 20,000 vehicles perday.

As the design engineer selected for this project, Spalding DeDecker Associates (SDA) assisted City staff with the evaluation of the area of Beck Road between Cheltenham Drive and White Pines Drive to detemmine the best location to accommodate a midblock crossing. Since the design of mid-block crossings can be complicated, SDA consulted with the Road Commission for Oakland County (RCOC) and other sources to solicit expertise regarding some of the altematives appropriate for mid-block crossings. A properly designed mid-block crossing can help direct pedestrians to cross in a defined location, rather than at random locations, and can help alert approaching vehic les that pedestrians may be present, making the crossing much safer.

Since this is the first mid-block crossing project under the City's jurisdiction, the initial design phase included a study to evaluate several types of treatments for the crossing such as refuge islands, illuminated pedestrian beacons, and the location of the crossing relative to adjacent streets and other obstacles. SDA performed a limited traffic study on Beck Road to evaluate the traffic pattems and help determine the appropriate design for the crossing. SDA's report, including the traffic study results, is attached. Based on SDA's recommendations, the mid-block crossing is proposed just north of Cheltenham Drive, as shown on the figure below. The crossing would include a $24^{\prime} \times 12^{\prime}$ pedestrian refuge island and additional street lighting to illuminate the crossing. The island would direct pedestrians in a way that they cross only one lane of traffic at a time. The project would also include the construction of any additional pathways needed to connect the mid-block crossing to the existing pathways, and will include proper signage and pavement markings to help increase driver awareness of potential pedestrian conflicts. Additionally, portions of Beck Road will require widening to accommodate the crossing.

The current preliminary construction estimate for this project is $\$ 166,939$. This estimate includes an asphalt overlay across the limits of the project, which wasn't initially considered necessary, but is now recommended to provide the lane widening required north and south of the pedestrian refuge island. The overlay would help the a ppearance of the pavement, avoid issues with potentially confusing lane delineation, and avoid the need to perform maintenance on the older pavement within a short time frame following this project.

Another option that was considered, but is not currently recommended, is the use of Rectangular Rapid Flashing Beacons (RRFB). An RRFB (see photo, right) incomorates flashing lights with pedestria n crossing waming signs that will flash when activated to let motorists know a pedestrian is present. The information reviewed for RRFBs is inconclusive regarding whether the installation is appropriate for this proposed mid-block crossing. Many of the studies focus on wider 4-lane roads where a crossing would be more challenging. RCOC has indicated that driver expectancy should be considered, meaning that in areas where this type of facility isn't common, the use of the RRFB can lead to driver and pedestrian confusion, where motorists are unsure of what to do. Maintenance has also been
 identified as an issue with RRFBs (e.g. obta ining manufacturer's parts and service when needed, and false reports by motorists that the unit is not working properly). One primary reason that an RRFB isn't recommended is the existence of sufficient gaps in Beck Road traffic, as venified by the study, provided a pedestrian refuge island is
 constructed. If not installed initially with a mid-block crossing, RRFBs can be easily added afterward if desired, at a cost of approximately $\$ 15,000$. Another pedestrian crossing signaling system that is available, but hasn't been considered for this crossing, is the High-intensity Activated crossWalK (HAWK) system. The HAWK (see photo, left) would be appropriate at a crossing with a higher pedestrian volume than what is expected at this crossing.

The proposed mid-block crossing would closely resemble Figure 5.47AA (below) from the non-motorized master plan.

Fig. 5.47AA. Subdivision T-Intersection Design Guidelines

The final design will be completed over the winter months with construction proposed for spring and fall of 2015.

Map Author: Croy
Date: $11 / 14 / 13$
Project: Beck Mid-Block Crossing
Version \#: v1.0

City of Novi

Engineering Division
Department of Public Service
26300 Lee BeGole Drive Novi, MI 48375

Fig. 3.11. Proposed Road Crossing Improvements

Road Crossing Improvements are needed in areas where there is a high demand to cross. These areas occur where a bike route crosses a collector or arterial road, a major bus stop or bus shelter is present, there is a long distance between crosswalks, or there is a high demand based on land use and population density.

This map illustrates where mid-block crossing improvements are needed. Many of these crossings are addressed in the implementation plan with the neighborhood connector routes and major corriodor developments. However, if demand is present they can be implemented sooner. Please note that these are initial recommendations and they need to be studied further prior to implementation.

Fig. 3.2F. Neighborhood Connectors

Beck Road Mid-Block Pedestrian Crossing
 Evaluation of proposed location and supporting information

SUMMARY

The City of Novi Department of Public Works is interested in the potential construction of a mid-block pedestrian crossing of Beck Road, north of Nine Mile Road. The specific location is just north of the intersection of Cheltenham Drive and Beck Road.

Spalding DeDecker Associates, Inc. (SDA) reviewed the existing traffic patterns and evaluated "gaps" in the directional and two-way traffic to evaluate the suitability of placing a cross walk. The frequency (per hour) and duration (seconds) of gaps helps to determine if an unsignalized crossing is feasible, and also if additional safety measures should be implemented with the crossing.

The results of the gap study indicate that there are sufficient gaps available for pedestrians to cross at this location before and after school hours, provided that a pedestrian refuge island is constructed. A refuge island is a mid-point for a crossing, which allows for a pedestrian to only be concerned with the gaps in one direction of traffic at a time.

To facilitate the construction of a refuge island at this location, the northbound and southbound lanes of Beck north of Cheltenham will need to be flared around the island location via widening the pavement on the east side of Beck Road and appropriate pavement markings. A street light (or lights) should be installed on both sides of the road at a crossing. The existing light at Cheltenham should be sufficient for the west half of the crossing, but a light will need to be added on the east side of Beck Road. Signing (pedestrian crossing ahead, and pedestrian crossing location) is also required to be placed to indicate the potential for pedestrian crossing. See the attached figure on the following page for a conceptual layout of the island and pavement markings.

Additional safety measures such as a rectangular rapid-flashing beacon (RRFB) system do not appear to be needed at this location, but may be implemented immediately if desired or after the crossing is in operation and it becomes apparent there is a safety concern.

EngineeringConsultants
SPALDING DEDECKER ASSOCIATES, INC. Infrastructure | Land Development | Surveying | LandscapeArchitecture

[^0]The following sections present some background information on the implementation of mid-block crossings, RRFB systems, and the findings of the gap study performed at the crossing in December 2013.

MID-BLOCK PEDESTRIAN CROSSINGS

 General Overview and InformationBased on national crash data from the Federal Highway Administration (FHWA), about 12 percent of all traffic fatalities can be attributed to pedestrian crashes. Furthermore, over 75% of these pedestrian fatalities occur away from intersections. Many of these crashes are preventable. Mid-block pedestrian crossings should be carefully considered so as to not present a hazard to motorists nor a false sense of security to pedestrians. There are numerous treatments that can be used to highlight mid-block pedestrian crossings to alert motorist to yield such as signs, ambient lighting, and warning lights.

The addition of raised medians or pedestrian refuge islands can further protect pedestrians. A pedestrian at a mid-block crossing must make several complex decisions in order to cross the street. Pedestrians must time their crossing and speed of walking with the speed of the approaching vehicles and the gaps between vehicles. This becomes more complicated when two opposing directions of traffic must be considered at once. Raised medians allow pedestrians to cross the roadway while focusing on one direction of traffic at a time. It has been shown that providing a raised median at marked crosswalks can reduce mid-block crashes by 46 percent.

The FHWA recommends the use of raised medians for curbed multilane roadways with more than 12,000 vehicles per day, a large number of pedestrians and intermediate or high travel speeds. Beck Road traffic exceeds 20,000 vehicles per day with one lane each way, has intermediate speeds, and is not curbed. The typical number of pedestrians crossing at this location appears low, but at the time of the study the area was snow covered and the lack of a safe crossing may reduce the number of pedestrians attempting to cross.

[^1]The implementation of a curbed refuge island on Beck Road is recommended based on the traffic count and speed. Local knowledge should be utilized in deciding if the number of pedestrians will increase if a safer crossing is provided, and further safety enhancements are warranted.

Consideration should be given to the rarity of mid-block crossings in the Beck Road corridor and in the overall area. Even with a refuge island and advanced signing, if pedestrians are rarely encountered in the corridor motorists may not be attentive when they do appear. Additional measures could be taken to raise motorist awareness when a pedestrian is about to cross the road.

Rectangular Rapid Flashing Beacon (RRFB) Overview

One such treatment to raise motorist awareness is the rectangular rapid-flashing beacon (RRFB) system. The RRFB installation is a pair (or two pairs with a refuge island) of signs which are activated by pedestrians attempting to cross. Yellow rectangular LED beacons are installed under pedestrian crossing warning signs, which flash in a "stutter flash" pattern with the right side of the beacon flashing twice as fast as the left side. The flashing lights are intended to let motorists know a pedestrian is nearby, and motorists should stop to allow the crossing and proceed with caution. The RRFB installation can either be hard wired or solar powered. For a typical RRFB installation of four solarpowered units the cost including installation is about $\$ 15,000$.

Numerous studies have been done to evaluate vehicle yielding rates at RRFB installations. Many of the studies were conducted on four-lane roadways. Overall, the installation of an RRFB has resulted in higher yielding rates by drivers to pedestrians. For example, a 2011 study in Portland, Oregon, evaluated two sites with four lanes and a speed limit of 45 mph . Yielding rates increased from $23-25 \%$ to 83% after the installation of the RRFB.

In locations without a pedestrian refuge island, the beacon is mounted on the right side of the road. It has been shown that yielding rates are significantly better when a second beacon is mounted in a pedestrian refuge island than just having one beacon on the
right side of the road. Multiple beacons provide greater visibility, especially at dusk or at night.

As with any new traffic control device, education and enforcement are needed for success. Based on study results by the FHWA, yielding results at RRFB locations in Michigan are lower than in other states. This is likely due to a lack of familiarity with RRFB installations and a lack of understanding of Michigan law.

LOCAL RRFB INSTALLATIONS

There are numerous locations around the metro Detroit area with RRFB installations including Ann Arbor, Chelsea, Detroit, Ferndale, Oxford, South Lyon and West Bloomfield. Additional locations outside of metro Detroit include the City of Davison (near Flint) and Delhi and Delta Townships (near Lansing).

The City of Ann Arbor has five RRFB installations that were installed at existing cross walks. Four of the locations are along Plymouth Road between Murfin Avenue and Green Road. Plymouth Road is a five-lane urban principal arterial with a posted speed ranging from 35 mph to 45 mph and an average daily traffic (ADT) of 22,000 vehicles. These RRFB installations include overhead lighting, overhead signing, a pedestrian refuge island, high visibility pavement markings, ground mounted signing, overhead RRFB and ground mounted RRFB. The RRFBs are either hard wired or solar powered.

In August 2013 there was a fatality at one of the RRFB crossings along Plymouth Road. A college student was killed when the vehicle traveling in the inside lane stopped but the vehicle in the outside lane did not stop. The RRFB had been flashing for 30 seconds and the pedestrian had nearly completed the crossing before being hit. The crash investigation found the driver to be driving 10 to 15 mph over the speed limit. The investigation is continuing so fault has not yet been assigned. The RRFB at this location gets used 200 to 300 times per day.

The remaining RRFB installation in Ann Arbor is located in a residential area on $7^{\text {th }}$ Street south of Washington Street. $7^{\text {th }}$ Street is classified as an urban minor arterial with
a speed limit of 30 mph , on-street parking and an ADT of 10,000 vehicles. There is a middle school nearby.

City of Ann Arbor staff has observed that vehicles yielding to pedestrians has increased from previous levels. The current level of yielding at the Plymouth Road and Beal Avenue location is 84% while the average for the state of Michigan is 75%.

The RRFB in the City of Chelsea was installed in the summer of 2012 and is located on Old US-12 near Silver Maples Drive. At this location, Old US-12 is a two-lane rural minor arterial with a 45 mph speed limit and an ADT of 11,200 vehicles. This solar powered RRFB gets used significantly in warmer months, primarily by senior citizens from the nearby senior complex. There has been a request for another installation near the community center.

The City of Chelsea pays the Washtenaw County Road Commission to maintain this RRFB installation. Besides having to reset the RRFB, the City has had no maintenance issues or complaints with the installation. Educating motorists has been the biggest concern.

There are three RRFB installations in the City of Detroit along Davison Avenue. In this area, Davison Avenue is a six-lane non-freeway urban principal arterial with a speed limit of 35 mph and an ADT of 37,000 vehicles. Due to vandalism, these units no longer function correctly and were not in use long enough to gauge their usefulness.

In South Lyon Township, there is an RRFB installation for the Huron Valley Trail crossing of Lyon Center Drive which is located east of Milford Road and north of Grand River Avenue. Lyon Center Drive is a three lane roadway with one lane in each direction and center left turn lane, with a speed limit of 25 mph . The RRFB at this location does not have a pedestrian refuge island. The area immediately adjacent to the crossing is undeveloped but there is a shopping center to the west. This location utilizes in-street signing which was added after observing traffic. Yielding rates improved with the additional treatments. Baseline yielding rates were 20\%, and after the RRFB was installed, yielding rates increased to 69\%. With the addition of in-street signs to the

RRFB, yielding rates increased further to 80%. In-street signs have some maintenance issues where they have to be replaced when hit and since they are installed in the pavement there are issues in the winter with snow plows.

The West Bloomfield Township RRFB installations are located at all legs of the threelane roundabout at Maple Road and Farmington Road. Outside of the roundabout, Maple Road is a two-lane or three-lane urban principal arterial with a speed limit of 45 mph and an ADT ranging from 28,500 vehicles to 29,900 vehicles. Farmington Road is classified as a two-lane urban minor arterial with a varying speed limit ranging from 35 mph north of Maple Road and 40 mph to the south. The ADT along Farmington Road ranges from 10,900 vehicles to 16,200 vehicles. This installation was placed in response to a lawsuit to facilitate blind pedestrians. Yielding rate information was not available when requested.

It should be noted that although some of the aforementioned installations are located in Oakland County, currently the Road Commission for Oakland County (RCOC) does not install, operate, or maintain RRFB installations. Any installations within Oakland County are installed, operated, and maintained by the local municipality, village, or township in which it is located. The RCOC has anecdotal evidence suggesting that there is driver and pedestrian confusion at RRFB installations, uncertain if motorists must stop or not, and on occasion, resulting in an accident. The confusion is also evident by the fact that RCOC has received phone calls from motorists or pedestrians who believe the signal is not working properly; after this is related to the owning agency and a service call is placed, it is confirmed that the signal is working as intended. Should service be necessary, RCOC is aware that local jurisdictions have experienced some difficulty in obtaining manufacturer's parts and service. A preferred pedestrian crossing signaling system that RCOC has installed is a HAWK beacon (High-intensity Activated crossWalK). Information regarding the operation of the HAWK system may be found at: http://www.rcocweb.org/Lists/Publications/Attachments/71/HAWK\ brochure2012.pdf.

BECK ROAD - GAP STUDY AT PROPOSED PEDESTRIAN CROSSING

North of Nine Mile Road, Beck Road is classified as an urban minor arterial with a posted speed of 40 mph and an ADT of 20,000 vehicles. In the vicinity of Cheltenham

Drive, Beck Road is a two-lane roadway with a northbound passing flare and a southbound right turn lane at Cheltenham Drive. There is an existing overhead street light at Cheltenham Drive. The area is primarily residential with a school, Thornton Creek Elementary, located nearby on 9 Mile Road, east of Beck Road. School starts at 8:50 AM and ends at 3:45 PM.

A gap study is typically performed in order to determine how much time a pedestrian has available to cross a roadway. A gap is defined as the measure of time, in seconds, between the rear bumper of the first vehicle and the front bumper of the second vehicle. A gap study was conducted at the project location on Thursday, December 19, 2013. Traffic data was collected during a morning period from 8:00 AM to 9:30 AM and an afternoon period from 3:15 PM to 4:15 PM which corresponds to periods before and after Thornton Creek Elementary school hours. School was in session the day the gap study was performed. Gaps were collected for northbound traffic, southbound traffic and for both directions at once. The results of the gap study are summarized in the tables below:

Gap Size	Number of Gaps						Total
(seconds)	$8: 00 \mathrm{AM}$ to $8: 15 \mathrm{AM}$	$8: 15 \mathrm{AM}$ to $8: 30 \mathrm{AM}$	$8: 30 \mathrm{AM}$ to $8: 45 \mathrm{AM}$	$8: 45 \mathrm{AM}$ to $9: 00 \mathrm{AM}$	$9: 00 \mathrm{AM}$ to $9: 15 \mathrm{AM}$	$9: 15 \mathrm{AM}$ to $9: 30 \mathrm{AM}$	Gaps
$2-3$	31	23	14	14	10	16	108
$4-5$	12	14	7	8	3	6	50
$6-7$	7	7	9	6	9	4	42
$8-9$	5	1	3	6	3	2	20
$10-11$	2	3	3	3	2	5	18
$12-13$	5	2	1	2	1	5	16
$14-15$	1	4	1	5	2	1	14
$16-17$	1	0	4	0	3	4	12
$18-19$	0	2	0	0	1	0	3
$20-21$	2	1	0	0	0	2	5
$22-23$	1	0	2	0	1	0	4
$24-25$	1	0	0	0	0	0	1
$26-27$	2	0	1	0	0	0	3
$28-29$	1	0	0	0	1	0	2
>29	3	4	2	1	2	2	14

Table 1: AM Period Gaps for Southbound Beck Road

Gap Size	Number of Gaps						
(seconds)	$8: 00$ AM to $8: 15 \mathrm{AM}$	$8: 15 \mathrm{AM}$ to $8: 30 \mathrm{AM}$	$8: 30 \mathrm{AM}$ to $8: 45 \mathrm{AM}$	$8: 45 \mathrm{AM}$ to $9: 00 \mathrm{AM}$	9:00 AM to $9: 15 \mathrm{AM}$	$9: 15 \mathrm{AM}$ to $9: 30 \mathrm{AM}$	Total Gaps
$2-3$	36	14	9	5	3	12	79
$4-5$	6	9	8	3	9	8	43
$6-7$	5	4	7	11	2	7	36
$8-9$	4	2	5	1	5	4	21
$10-11$	3	2	3	0	1	3	12
$12-13$	2	4	3	0	3	2	14
$14-15$	4	2	1	1	0	2	10
$16-17$	2	2	2	1	0	1	8
$18-19$	1	1	1	1	3	0	7
$20-21$	3	1	0	1	0	0	5
$22-23$	0	3	0	1	1	0	5
$24-25$	0	1	2	1	1	2	7
$26-27$	0	1	2	0	0	1	4
$28-29$	0	1	0	1	0	0	2
>29	3	1	1	2	1	1	9

Table 2: AM Period Gaps for Northbound Beck Road

Gap Size	Number of Gaps						
(seconds)	$8: 00$ AM to $8: 15 \mathrm{AM}$	$8: 15 \mathrm{AM}$ to $8: 30 \mathrm{AM}$	$8: 30 \mathrm{AM}$ to $8: 45 \mathrm{AM}$	$8: 45 \mathrm{AM}$ to $9: 00 \mathrm{AM}$	$9: 00 \mathrm{AM}$ to $9: 15 \mathrm{AM}$	$9: 15 \mathrm{AM}$ to $9: 30 \mathrm{AM}$	Gaps
$2-3$	40	24	14	12	9	24	123
$4-5$	15	3	11	7	5	14	55
$6-7$	7	5	8	3	45	3	71
$8-9$	3	2	3	3	1	4	16
$10-11$	1	1	1	2	1	0	6
$12-13$	3	0	2	0	0	1	6
$14-15$	2	2	1	2	1	0	8
$16-17$	1	1	1	0	0	1	4
$18-19$	0	0	1	1	0	0	2
$20-21$	0	1	0	0	0	1	2
$22-23$	0	1	0	0	0	0	1
$24-25$	0	0	0	0	0	0	0
$26-27$	0	0	0	0	0	0	0
$28-29$	0	0	0	0	0	0	0
>29	0	0	0	0	0	0	0

Table 3: AM Period Gaps for Combined Northbound \& Southbound Beck Road

Gap Size	Number of Gaps				
Total Gaps					
	$3: 15 \mathrm{PM}$ to $3: 30 \mathrm{PM}$	$3: 30 \mathrm{PM}$ to $3: 45 \mathrm{PM}$	$3: 45 \mathrm{PM}$ to $4: 00 \mathrm{PM}$	$4: 00 \mathrm{PM}$ to $4: 15 \mathrm{PM}$	
$2-3$	12	7	5	11	35
$4-5$	11	6	9	12	38
$6-7$	5	2	7	6	20
$8-9$	0	2	6	3	11
$10-11$	4	1	2	2	9
$12-13$	0	3	1	2	6
$14-15$	1	2	2	0	5
$16-17$	3	0	0	1	4
$18-19$	0	0	0	0	0
$20-21$	1	1	1	0	3
$22-23$	2	0	0	0	2
$24-25$	1	1	0	0	2
$26-27$	0	0	0	0	0
$28-29$	0	0	0	0	0
>29	0	1	0	2	3

Table 4: PM Period Gaps for Southbound Beck Road

Gap Size	Number of Gaps				Total Gaps
(seconds)	$3: 15 \mathrm{PM}$ to $3: 30 \mathrm{PM}$	$3: 30 \mathrm{PM}$ to $3: 45 \mathrm{PM}$	$3: 45 \mathrm{PM}$ to $4: 00 \mathrm{PM}$	$4: 00 \mathrm{PM}$ to $4: 15 \mathrm{PM}$	
$2-3$	10	2	7	15	34
$4-5$	8	8	3	6	25
$6-7$	7	3	4	3	17
$8-9$	5	2	4	1	12
$10-11$	0	0	0	2	2
$12-13$	2	1	0	1	4
$14-15$	2	0	0	2	4
$16-17$	3	1	1	0	5
$18-19$	1	0	1	0	2
$20-21$	0	1	1	0	2
$22-23$	0	0	0	1	1
$24-25$	1	0	0	2	3
$26-27$	1	0	0	0	1
$28-29$	1	0	0	0	1
>29	0	2	1	2	5

Table 5: PM Period Gaps for Northbound Beck Road

Gap Size	Number of Gaps				
Total Gaps					
	$3: 15 \mathrm{PM}$ to $3: 30 \mathrm{PM}$	$3: 30 \mathrm{PM}$ to $3: 45 \mathrm{PM}$	$3: 45 \mathrm{PM}$ to $4: 00 \mathrm{PM}$	$4: 00 \mathrm{PM}$ to $4: 15 \mathrm{PM}$	
$2-3$	16	7	7	13	43
$4-5$	10	5	7	5	27
$6-7$	9	1	5	1	16
$8-9$	4	2	1	3	10
$10-11$	0	1	0	1	2
$12-13$	0	2	0	2	4
$14-15$	0	1	0	0	1
$16-17$	1	0	0	0	1
$18-19$	0	0	0	0	0
$20-21$	0	0	0	0	0
$22-23$	0	0	0	0	0
$24-25$	0	0	0	0	0
$26-27$	0	0	0	0	0
$28-29$	0	0	0	0	0
>29	0	0	0	0	0

Table 6: PM Period Gaps for Combined Northbound \& Southbound Beck Road
In order to evaluate the time a pedestrian has to cross a roadway, a standard walking speed of 4 feet per second was used in the analysis. The existing geometry of Beck Road is two lanes. An additional center lane is being proposed on Beck Road to allow the construction of a pedestrian refuge island at the crossing location as well as to allow northbound to westbound turning movements onto Cheltenham Drive to be made from the center turn lane. By extending the center turn lane south enough to be a benefit for northbound to westbound turning vehicles, no northbound passing flare will be necessary.

Pedestrian crossing times vary based on the specific roadway geometry and traffic volumes. The level of comfort of the pedestrian also is a factor. In order for a pedestrian to cross two lanes of traffic of Beck Road, a minimum 6-second gap is required in northbound and southbound traffic combined. Tables 3 and 6 show the gaps for this condition during the AM and PM periods.

If there is a pedestrian refuge island, a shorter gap is needed since the pedestrian only has to cross one lane of traffic at a time. A minimum 3-second gap is needed for a pedestrian to cross one lane of either northbound or southbound traffic on Beck Road. This situation is illustrated by Tables 1, 2, 4 and 5.

Based on the results of the gap study, there are sufficient gaps available for several crossings per hour without a pedestrian island. With an island, the number of suitable gaps nearly doubles.

Guidance for Installation of Pedestrian Crosswalks on Michigan State Trunkline Highways

Background

The Michigan Department of Transportation’s (MDOT) overall mission includes the provision of safe and efficient transportation facilities for all road users. Determining when and where to provide appropriate treatments such as marked crosswalks and pedestrian signing is often complicated. Elements that can affect decisions on whether to install crossing treatments and what type include:

- Posted speed limit of the roadway
- Volumes of vehicular and pedestrian traffic
- Number of travel lanes and geometry of the roadway at the crossing location
- Profile of pedestrian traffic (proportion of crosswalk used by elderly or children)
- Type of roadway
- Setting (urban or rural)

All of the elements listed above can influence decision making on whether a crosswalk should be installed at a given location and if additional treatments should be considered. Not providing a uniform approach to pedestrian crossing treatments can create confusion for both motorists and pedestrians, resulting in a potential to lessen the effectiveness of pedestrian crossings.

The objective of this guidance document is to establish a step-by-step procedure to evaluate the use of various pedestrian crossing treatments. This guidance is expected to provide crosswalk treatments that meet both motorist and pedestrian expectations and consistency on trunkline routes. Recent pedestrian research studies, existing crosswalk guidelines used by other governmental agencies, manuals on traffic control devices, and state statute were reviewed in order to establish this guidance document.

Crosswalk Location Evaluation Procedures

Evaluation of a proposed crosswalk location for potential crossing treatments on state trunkline routes should include the following four basic steps:

1) Identification and Description of the Crossing Location
2) Physical Data Collection
3) Traffic Data Collection and Operational Observations
4) Application of Data to Determine Appropriate Treatments

Step 1: Identification and Description of the Proposed Crossing Location
a) Identify the pedestrian crossing location including the major street and the specific location of the crossing
b) Determine if the crossing location connects both ends of a shared-use path.
c) Note the posted speed along the major street at the crossing location.
d) Identify the existing traffic control, if any, and any existing crossing treatments (signs, markings or physical treatments), street lighting and curb ramps.
e) Identify lane use (setting) on either side of crossing.

Step 2: Physical Data Collection
a) Determine the existing roadway configuration including the number of lanes and the presence of raised medians or refuge islands at the crossing location.
b) Identify the nearest marked or protected crossing and measure the distance to this proposed crossing.
c) Measure the stopping sight distance (SSD) on all vehicular approaches to the proposed crossing. If the SSD is less than eight times the posted speed limit, determine if improvements (such as removal of obstructions) are feasible means to mitigate the inadequate SSD. Consider traffic calming treatments that would encourage lower driving speeds.

Step 3: Traffic Data Collection and Operational Observations

a) Gather or collect pedestrian crossing volumes during the peak hours of use. This will typically involve AM, midday, and PM peaks hours. Locations near schools may only require two hours of data collection, corresponding to school opening and closing times. Pedestrian volumes should include and differentiate between pedestrians and bicyclists, the number of young, elderly and/or disabled pedestrians. For locations where school crossing traffic is anticipated, the volume of student pedestrians (school age pedestrians on their way to/from school) should also be noted separately. Whenever possible, pedestrian and bicycle volumes should be collected during weather months and conditions that represent peak crossing activity. Consider gathering data before, during and after special events or near venues that generate large pedestrian volumes such as stadiums, conventions centers, theaters, etc.
b) Collect hourly and average daily traffic (ADT) volumes for vehicle traffic along the roadway at the crossing location, including truck volumes and turning movements simultaneously with pedestrian data.

Step 4: Application of Data to Determine Appropriate Treatments
a) Using the available data, utilize the following to determine appropriate treatment(s) for signalized, stop-controlled or uncontrolled locations :

- Figure 1 (see page 8) - Pedestrian Crossing Treatment Flow Chart at Controlled Crossings,
- Figure 2 (see page 9) - Pedestrian Crossing Treatment Flow Chart at Uncontrolled Crossings and
- Table 1 (see page 10) - Criteria for Types of Crossing Treatments at Uncontrolled Locations (if applicable)
b) Consider and incorporate the following additional evaluation considerations as appropriate in:
- Figure 3a (see page 11) - Installation of Pedestrian Hybrid Beacon or Rectangular Rapid Flashing Beacon Signs on Low Speed Roadways (≤ 35 mph)
If an electronic device is being considered, submit Form 1597 to MDOT Signal

Operations to request a study for any electronic pedestrian device.

Types of Crossing Treatments at Uncontrolled Locations

Four primary types of uncontrolled crossing treatments are discussed below. These treatments consider the physical roadway conditions, vehicle volumes, pedestrian volumes and posted speed limit at the potential crossing location. Table 1 should be used to determine which crossing type should be applied. All crossing types shall include ADA compliant sidewalk ramps. An uncontrolled location includes mid-block and unsignalized intersections where mainline of the state trunkline does not stop.

Crossing Type A:

- Marked special emphasis crosswalk (See MDOT PAVE 945 series)
- Standard pedestrian warning signs (W11-2) (See MDOT Traffic Sign Design, Placement and Application Guide). Evaluate need for advanced signing.

- If the location is a designated school crossing then standard school crossing signs (S1-1) should be used.

Crossing Type B:

- Marked special emphasis crosswalk (See MDOT PAVE 945 series)
- Standard pedestrian warning signs (MDOT Traffic Sign Design, Placement and Application Guide). Evaluate need for advanced warning signs.
- Geometric improvements (such as
 median nose extensions, curb extensions, pork chop island, tighter curb radius or median refuge islands) or consider pedestrian activated Rectangular Rapid Flashing Beacons (RRFB) if criteria are met in Figure 3a or 3b (see page 11). Submit form 1597 to MDOT Signal Operations to request a study for any electronic pedestrian device.
- Consider use of in-street yield to pedestrian crossing sign (R1-6) in low speed urban setting if the local unit of government has adopted the Michigan Uniform Traffic Code for Cities Townships and Villages.
- Additional pavement markings may be required such as double yellow centerline
or cross hatching in advance of a median refuge island.
- If the location is a designated school crossing then standard school crossing signs (S1-1) should be used.
- Consider curb extensions if on-street parking is present and storm drainage structures can be accommodated.
- If pedestrian volume falls above the RRFB limit line on Figure 3a or 3b, go to Crossing Type D.

Crossing Type C:

- Where the posted speed is greater than or equal to 45 mph , determine if modifications can be made to the geometrics of the roadway or signal timing adjusted to calm traffic to reduce travel speeds (85th) thus allowing the road to have a lower the
 posted speed limit and a raised median and/or pork chop island can be installed. A lower posted limit must be supported by a speed study. If so, go to Crossing Type B
- If not possible or if pedestrian volumes fall above the Rectangular Rapid Flashing Beacon (RRFB) limit line on Figure 3a or 3b, go to Crossing Type D

Crossing Type D:

- Crossing has the following configurations:
o 4 Lanes with speed greater than or equal to 45 mph and ADT greater than or equal to 12,000 vpd
o 5 Lanes with refuge island or
 4 lane with raise median with speed greater than or equal to 45 mph and ADT greater than or equal to $15,000 \mathrm{vpd}$
o 5 Lanes with speed greater than or equal to 45 mph and ADT greater than or equal to $12,000 \mathrm{vpd}$
o 6 Lanes with speed greater than or equal to 40 mph and ADT between 1,500 and 12,000 vpd or ADT greater than 12,000 vpd for all posted speeds.
- 3 or more through lanes in a given direction and posted speed 40 mph or greater.
- Consider the Pedestrian Hybrid Beacon (PHB), pedestrian traffic signal or grade separated pedestrian crossing. Submit form 1597 to MDOT Signal Operations to request a study for any electronic pedestrian device.
- Must consider corridor signal progression, grades, physical constraints and other engineering factors.

Table 1 lists the number of lanes crossed to reach refuge and the number of multiple threat lanes per crossing. This information does not directly play into the use of Table 1, but does provide important context to help distinguish the crossing types and support the difference in recommended crossing treatments.

Additional crossing treatments for consideration can be found in Best Design Practices for Walking and Bicycling in Michigan. http://www.michigan.gov/documents/mdot/MDOT_Research_Report_RC1572_Part6_387521_7 .pdf

Minimum Vehicle Volume for Treatments

Crossing treatments should generally not be installed at locations where the ADT is lower than 1,500 vehicles per day. Exceptions may be made at school crossing locations where the peak hour vehicle traffic exceeds 10% of the ADT. School crossings are defined as locations where 10 or more student pedestrians are crossing in any given hour and the crossing is a designated school walking route. Treatments for roadways with greater than 1,500 vehicles per day should be installed based on the criteria in Figure 1, Table 1 and the information in Figure 3 (a or b depending on posted speed limit).

Minimum Pedestrian Volume for Treatment at Uncontrolled Crossing Locations

The base threshold for consideration of an enhanced crossing treatment at an uncontrolled location is 20 pedestrians per hour. This threshold is consistent with national guidance and policies adopted by other states and cities.

The Minimum Pedestrian Volume Thresholds are as follows:

- 20 pedestrians per hour* in any one hour, or
- 18 pedestrians per hour* in any two hours, or
- 15 pedestrians per hour* in any three hours, or
- 10 school age (grades K-12) pedestrians traveling to or from school in any one hour and the crossing is a designated school walking route
*Young, elderly, and disabled pedestrians count two times towards volume thresholds
Definition of a Pedestrian Median Refuge and Minimum Median Refuge Width
A pedestrian median refuge island is defined as a location in the middle of a pedestrian crossing where a pedestrian can take refuge, separating the crossing into two segments, across each direction of approaching traffic. A painted center median or a painted turn lane does not
constitute a pedestrian refuge. A pedestrian refuge must include some type of raised median as described below:
- A raised median nose at an intersection (next to a left turn bay for example) can only be considered a pedestrian refuge for the adjacent crosswalk if the median is at least four feet wide and the left turn volume is less than 20 vehicles per hour. This low left turn volume means that during most pedestrian crossings there will not be a vehicle in the left turn lane as they cross the street.
- A raised median at a mid-block pedestrian crossing must be at least six feet wide (preferably 8 feet wide) and includes curb ramps or a walkway at grade through the median. For shared-use path crossing locations, a 10 foot median refuge width is desirable to accommodate bicycles with child trailers, recumbent bicycles and tandem bicycles.

Distance to Nearest Marked or Protected Crossing

The Pedestrian Crossing Treatment Flow Chart in Figure 2 includes consideration of spacing criteria for an uncontrolled crossing to the nearest marked or signalized crossing. The flowchart requires that a new uncontrolled mid-block crossing be at least 300 feet from the nearest crossing. However, this spacing criterion can be waived if the proposed crossing serves a shared-use path or the pedestrian crossing volume exceeds twice the minimum threshold. This criterion is subject to engineering judgment. In urban conditions, where a typical block length is 400 feet, the engineer may want to consider allowing a minimum of 200 feet, provided that the pedestrian crossing:

- Does not cross any left or right turn lanes or their transitions, where it is anticipated that vehicles will be changing lanes
- Is not near an intersection area where it will create undue restriction to vehicular traffic operations.

Pedestrian Crossing Treatments at Higher Speed Roadways with Rural Character

There may be conditions that necessitate the installation of pedestrian crossings where speeds are higher and special consideration is warranted. Engineering judgment should be applied and consideration given to providing an uncontrolled crosswalk. Engineering judgment should also be used in rural scenarios at shared use path crossings. Pedestrian warning signs may be adequate in some situations.

Figure 1
Pedestrian Crossing Treatment Flow Chart for Controlled Crossing

Figure 2
Pedestrian Crossing Treatment Flow Chart for Uncontrolled Crossing

Table 1
Criteria for Types of Crossing Treatments at Uncontrolled Locations

Roadway configuration	\# of lanescrossed toreach arefuge	\# of multiple threat lanes* per crossing	Roadway ADT and Posted Speed															
			1,500-9,000 vpd				9,000-12,000 vpd				12,000-15,000 vpd				>15,000 vpd			
			$\begin{array}{\|l\|} \hline \leq 30 \\ \mathrm{mph} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 35 \\ \mathrm{mph} \end{array}$	$\begin{gathered} 40 \\ \mathrm{mph} \end{gathered}$	$\begin{aligned} & \geq 45 \\ & \mathrm{mph} \end{aligned}$	$\begin{array}{\|c\|} \hline \leq 30 \\ \mathrm{mph} \end{array}$	$\begin{gathered} 35 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} 40 \\ \mathrm{mph} \end{gathered}$	$\begin{aligned} & \geq 45 \\ & \mathrm{mph} \end{aligned}$	$\begin{aligned} & \leq 30 \\ & \mathrm{mph} \end{aligned}$	$\begin{array}{\|c\|} \hline 35 \\ \mathrm{mph} \end{array}$	$\begin{gathered} 40 \\ \mathrm{mph} \end{gathered}$	$\begin{aligned} & \geq 45 \\ & \mathrm{mph} \end{aligned}$	$\begin{aligned} & \leq 30 \\ & \mathrm{mph} \end{aligned}$	$\begin{gathered} 35 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} 40 \\ \mathrm{mph} \end{gathered}$	$\begin{aligned} & \geq 45 \\ & \mathrm{mph} \end{aligned}$
2 Lanes (one way street)	2	1	A	A	A	B	A	A	B	B	A	A	B	B	A	A	B	B
2 Lanes (two way street with no median)	2	0	A	A	A	B	A	A	B	B	A	A	B	B	A	A	B	B
3 Lanes w/refuge island or 2 Lanes w/raised median	1	0	A	A	A	B	A	A	B	B	A	A	B	B	A	B	B	B
3 Lanes (center turn lane)	3	1	A	A	B	B	A	B	B	B	A	B	B	B	A	B	B	B
4 Lanes (two way street with no median)	4	2	A	B	B	C	A	B	C	C	A	B	C	D	B	B	C	D
5 Lanes $\mathrm{w} / \mathrm{refuge} \mathrm{island} \mathrm{or} 4$ lanes $\mathrm{w} / \mathrm{raised}$ median	2	2	A	A	B	B	A	B	B	c	A	B	c	C	B	B	c	D
5 Lanes (center turn lane)	5	2	A	B	C	C	B	B	C	C	C	C	C	D	C	C	C	D
6 lanes (two way street with or without median)	3 to 6	4	A	B	D	D	B	B	D	D	D	D	D	D	D	D	D	D
* Minimum pedestrian volumes (page 6) must be met before consideration of uncontrolled crossing treatments.																		
See page 4 and 5 for detailed description of treatments for Crossing Type A, B, C and D.																		

Figure 3a
Installation of Pedestrian Hybrid Beacon or Rectangular Rapid Flashing Beacon Signs on Low Speed Roadways ($\leq 35 \mathrm{mph}$)

Figure 3b
Installation of Pedestrian Hybrid Beacon or Rectangular Rapid Flashing Beacons Signs on High Speed Roadways > 35 mph)

*See MMUTCD for pedestrian signal warrant graphs. Submit form 1597 to MDOT Signal Operations to request a study for any electronic pedestrian device.

Traffic Control Device Guidance

Crosswalk Pavement Marking Guidance
Crosswalk markings at an intersection shall be two 6 inch transverse markings as specified in the Pavement Marking Standard for Intersection, Stop Bar and Crosswalk Markings.
http://mdotcf.state.mi.us/public/tands/Details_Web/mdot_pave-945-b.pdf
Crosswalk markings for established school crossings and mid-block locations shall be Special Emphasis 12" longitudinal markings as specified in the Pavement Marking Standard for Intersection, Stop Bar and Crosswalk Markings.
http://mdotcf.state.mi.us/public/tands/Details_Web/mdot_pave-945-b.pdf
Pavement marking materials shall be placed as specified in the Pavement Marking Materials Usage Guidelines. http://mdotcf.state.mi.us/public/tands/Details_Web/mdot_pavemark_material-guide.pdf

Crosswalk Signing Guidance
Guidance for signing can be found in the MDOT Traffic Sign Design, Placement and Application Guidelines.
http://mdotcf.state.mi.us/public/tands/Details_Web/mdot_signing_design_placement_applicati on_guidelines.pdf

Traffic Signal Guidance
Guidance for the installation of traffic signals can be found in the MDOT document Traffic Signals A Guide for Their Proper Use.
http://mdotcf.state.mi.us/public/tands/Details_Web/mdot_signal_guideforuse.pdf

References

1) Michigan Manual on Uniform Traffic Control Devices, 2011.
2) Safety Effects of Marked vs Unmarked Crosswalks at Uncontrolled Locations: Final Report and Recommended Guidelines, Zeeger, C.V. and others, U.S. Department of Transportation, Federal Highway Administration, September 2005.
3) City of Boulder Pedestrian Crossing Treatment Installation Guide, November 2001.
4) Improving Pedestrian Safety at Unsignalized Crossings, Kay Fitzpatrick and others, Transit Cooperative Research Program Report 112 and National Cooperative Highway Research Program Report 562, 2006.
5) The Effects of Advance Stop Lines and Sign Prompts on Pedestrian Safety in a Crosswalk on a Multilane Highway, Van Houten, R., Journal of Appiled Behavior Analysis, Number 3, pages 245-251, Fall 1988.
6) Pedestrian Facilities Users Guide - Providing Safety and Mobility, Zegeer, C.V. and others, Federal Highway Administration publication number FHWA-RD-01-102, March 2002.
7) Safety Analysis of Marked Versus Unmarked Crosswalks in 30 Cities, Zeeger, C.V. and others, ITE Journal, January 2004.

BIID

for

Beck Road Mid-Block Pedestrian Crossing

Bid of Florence Cement Company hereinafter called Bidder, organized and existing under the laws of or a resident of the State of Michigan, doing business as
a corporation *.

Insert as applicable: "a corporation", "a partnership" or "an individual".
TO THE CITY OF NOVI, MICHIGAN, hereinafter called OWNER:
The undersigned as Bidder hereby declares: that this Bid is made in good faith without fraud or collusion with any person or persons bidding on the same Contract; that the Bidder has read and examined the Advertisement for Bids, Instructions to Bidders, Bid, General Conditions, Supplementary Conditions, Agreement, Forms of Bond, Specifications and Drawings, as prepared by the ENGINEER, and understands all of the same; that the Bidder of its representative has made personal investigation at the site and has become fully familiar with regard to the conditions to be met in the execution of this Contract, and the undersigned proposes to furnish all labor, materials, tools, power, transportation, and construction equipment necessary for the construction of the Project and performing related work in full accordance with the aforesaid Contract Documents, including any and all Addenda officially issued, their receipt of which is hereby acknowledged:

The Contract will be awarded to the lowest responsive, responsible Bidder based on the unit prices for all Work specified.

The Bidder agrees to complete the Project for the following unit prices:

Item No.	Ref Spec	Item Description	Qty	Unit	Unit Price	Total Price
1	02.02	Bonds, Insurance and Mobilization $(5 \% \mathrm{Max})$	1	LS	$13,000.00$	$13,000.00$
2	02.02	Pre-Construction Audio-Visual	1	LS	1500.00	1500.00
3	30.12	Soil Erosion Control Measures	1	LS	1000.00	1000.00
4	30.13	Maintaining Traffic	1	LS	$15,000.00$	$15,000.00$
5	30.14	HMA Surface, Remove, Modified	1137	SY	8.00	9096.00
6	30.15	Sidewalk, Remove	1585	SF	1.00	1585.00

7	30.16	Concrete Curb and Gutter, Remove	215	LF	11.00	2365.00
8	M501	Cold Milling HMA Surface	4100	SY	3.00	$12,300.00$
9	M203	Sewer, Rem, Less than 24 Inch	25	LF	10.00	400.00
10	M203	Culv, End, Rem, Less than 24 Inch	1	EA	400.00	400.00
11	M205	Excavation, Earth	110	CY	40.00	4400.00
12	30.17	Subrade Undercut (As Needed)	225	CY	i 5.00	$10,125.00$
13	M302	Aggregate Base, 6 inch	440	SY	12.00	5280.00
14	M302	Aggregate Base, 10 inch	1920	SY	12.00	$23,040.00$
15	M307	Shoulder, CL II, 4 inch	455	SY	8.00	3640.00
16	M602	Conc Pavt, Misc, Nonreinf, 8 inch	17	SY	85.00	1445.00
17	30.18	Concrete Curb and Gutter, Modified	376	LF	40.00	$15,040.00$
18	M802	Driveway Opening, Conc, Det M	130	LF	35.00	4550.00
19	30.19	Concrete Spillway	8	SY	75.00	600.00
20	30.20	HMA Surface Repair	450	SY	91.00	$13,950.00$
21	M501	HMA, 3C	45	TON	170,00	76.50 .00
22	M501	HMA, 5E10	490	TON	110.00	53,900,00
23	30.21	Corrugated HMA Divider, Depressed	225	LF	10.00	2250.00
24	30.22	Pathway Grading	1.85	STA	2000.00	3700.00
25	30.23	Concrete Curb, Sidewalk	110	LF	20,00	2200.00
26	M803	Sidewalk, Conc, 4 inch	1175	SF	5.90	6462.50
27	30.24	Sidewalk, Conc, 6 inch	785	SF	7.50	5887.50
28	30.25	ADA Detectable Warning Plate	96	SF	20.00	1920.00
29	30.27	Str Rehab Type 2: Structure Cover Adjust	4	EA	400.00	1606.00
30	30.28	Str Rehab Type 3: Reconstruct Structure	1	EA	900.00	900.00
31	30.29	Structure Cover, Type A	2	EA	000.00	1200.00
32	30.29	Structure Cover, Type B	2		500.00	1800.00
33	30.29	Structure Cover, Type C	1	EA	$\begin{gathered} 500.00 \\ 1000.00 \end{gathered}$	500.00
34	30.30	12 Inch RCP	49	LF	50.00	2450.00
35	30.31	12 Inch RCP End Section w Bar Screen, Complete	3	EA	1000.00	4800.00
	$\underset{\operatorname{Rev} 2 / 18}{\text { CITY }}$	$\mathrm{DF}_{5} \text { NOVI }$				April 2015

36	30.32	Tap Existing Manhole	1	EA	30×10	300.00
37	30.33	Ditching	130	LF	15.00	1950,00
38	30.34	Sign, R4-7 Keep Right, Modified	2	EA	200.00	400.00
39	30.34	Sign, W16-9P Ped Crossing Ahead, Modified	2	EA	180,00	360.00
40	30.34	Sign, W11-2 Ped Crossing,Modified	4	EA	180.00	720.00
41	30.34	Sign, W16-7P Left Arrow, Modified	2	EA	90.00	180.00
42	30.35	Post, Steel, 3 Pound, Modified	4	EA	115,00	460.06
43	30.36	Perforated Steel Square Tube Sign Breakaway Sys	2	EA	995.00	1990.00
44	30.37	Plastic Delineator, Round	8	EA	75.00	600.00
45	30.38	Pavement Marking, Yellow, 4 Inch	2595	LF	0.55	1427.25
46	30.38	Pavement Marking, White, 4 Inch	1740	LF	0.55	957.00
47	30.38	Pavement Marking, Cross Walk, Recessed, 12 Inch	65	LF	10.25	666.25
48	30.38	Pavement Marking, Yellow, 12 Inch	130	LF	1.95	253.50
49	30.39	Restoration	1	LS	4580.00	4580.00
50	30.40	Inspection Crew Days	33	DAY	\$640.00	$21,120,00$
TOTAL BASE BID PRICE:					\$ $271,100.00$	

If the foregoing Bid shall be accepted by the OWNER, the undersigned agrees to enter into the attached form of Agreement within ten (10) days after receiving notice of such acceptance, will furnish the OWNER satisfactory bonds and certificates of insurance coverage, and will complete the Project, at the price and within the time stated in this Bid.

The undersigned further agrees that if the foregoing Bid shall be accepted, work will commence immediately after the Contract has been awarded, the Agreement executed, and a Notice to Proceed received. The undersigned shall complete the Work to Substantial Completion within 30 calendar days, and to Final Completion, including restoration and all punch list items, within 45 calendar days.

The undersigned attaches hereto its Bid security, as required by the Advertisement for Bids and Instructions to Bidders. The undersigned agrees that in case it shall fail to fulfill its obligations under the foregoing Bid, and/or shall fail to furnish bonds, as specified, the OWNER may, at its option determine that the undersigned has abandoned its rights and interests in such Contract and that its Bid security accompanying its Bid; has been forfeited to the said OWNER, but otherwise the Bid security shall be returned to the undersigned upon the execution of the Contract and the acceptance of the bonds.

The undersigned also agrees that for each and every calendar day that he may be in default of Substantial Completion of the Work, within the time specified in this Bid, the OWNER will suffer a damage of Six Hundred Dollars ($\$ 600.00$) per day, and said OWNER shall be compensated therefore at the rate as liquidated damages in accordance with the Agreement.

In submitting this Bid, it is understood that the right is reserved by the OWNER to accept any bid, to reject any or all Bids, and to waive irregularities in bidding in the interest of the OWNER.

$\frac{1258523 \mathrm{mile} \mathrm{Rol}}{\text { Street }^{*}}$
Shelby Township, MI 48315

$\frac{\text { Angelo 5. Randi Aresiclent }}{\text { Name and Title of Signatory* }}$

586-997-2666
Telephone Number*
586-997-3966
*Typed or printed in ink.

BIDDER'S QUALIFICATION AND EXPERIENCE STATEMENT

The OWNER will require supporting evidence regarding Bidder's Qualifications and competency. The Bidder will be required to furnish all of the applicable information listed below, which must be submitted with the sealed Bid at the time of Bid Opening. The Qualifications and Experience Statement must be typewritten and signed in ink.

A fill-in-the blank version of this form is available for your convenience on the City of Novi's website (www.cityofnovi.org) under Forms \& Permits/Engineering.

QUALIFICATIONS AND EXPERIENCE STATEMENT

The undersigned certifies under oath that the information provided herein is true and sufficiently complete so as not to be misleading.

Submitted to: City of Novi
Address: \qquad
Submitted by: Angelo 5. Lan di
Name: Florence Cement Company
Address: 1258523 Mile pd
City, State, ZIP Shelby Townshin, MI 48.365
Telephone Number: $586-997-2666$ Fax Number: 586-997-3966 Principal Office: same as above

Corporation: yes
Joint Venture: \qquad
Partnership: \qquad Other: \qquad
Individual: \qquad
Name of Project: Beat Md. Mid Block Pedestoicen Crossing
Type of Work (file separate form for each classification of work):
General: \qquad Plumbing: \qquad
HVAC: \qquad Electrical: \qquad
Other: conciete+itsphalitaring (Please Specify)
semen, water and grading
[Engineer to modify list of applicable trades experience, tailored to requirements of the project.]

CITY OF NODI

Organization

How many years has your organization been in business as a CONTRACTOR? \& 9

How many years has your organization been in business under its present business name? if of
Under what other business names has your organization operated?
Aet pro. t Coucete Andeccts Con.

If your organization is a corporation, answer the following:
Date of Incorporation: $4 a \mathrm{arh}^{2} \mathrm{c}, 1966$

President's Name: Angelo Si Rani
Vice President's Name: Michael pigfigito
Secretary's Name:
Michael Attiglio
Treasurer's Name: \qquad

If your organization is a partnership, answer the following:
Date or Organization: \qquad

Type of Partnership: \qquad
Names of General Partners: \qquad

If your organization is individually owned, answer the following:
Date or Organization: \qquad

Name of OWNER: \qquad

If the form of your organization is other than those listed above, describe it and name the principals:

Licensing

List jurisdictional and trade categories in which your organization is legally qualified to do business, and indicate registration or license numbers, if applicable:

$$
\begin{aligned}
& \text { indicate registration or license numbers, if applicable: } \\
& \text { see attach ed MAOT Qucatificution sheet }
\end{aligned}
$$

List jurisdiction in which your organization's partnership or trade name is filed:
Michigan

Experience

List the categories of work that your organization normally performs with its own forces:
sewer wet er
On a separate sheet, list major construction projects your organization has in progress. List the name of project, owner, architect/engineer, contract amount, percent complete, and scheduled completion date.
see attached company resume

On a separate sheet, list the major construction projects your organization has completed in the past five (5) years. List the name of the project, owner, architect/engineer, contract amount, date of completion, and percentage of the cost of the work performed with your own forces.
see attached company resume

On a separate sheet, list the construction experience and present commitments of the key individuals of your organization who would be employed, in the Work.
see attach ed company resume

Claims and Suits

If the answer to any of the questions below is yes, please attach details.
Has your organizations ever failed to complete any work awarded to it? _ A/O
Are there any judgments, claims, arbitration proceedings or suits pending or outstanding against your organization or officers? \qquad

Has the City of Novi filed a claim on any contract within the prior three years which asserted that your organization:

1) failed to perform as required by the contract?
\qquad YES \qquad NO
2) completed contracted work in an untimely manner causing delays and interference;

3) lacked financial resources and the ability to satisfactorily perform the contract or provide the services or supplies;
\qquad YES

4) exhibited poor quality of performance or completed work under the contract;
\qquad YES
 NO
5) failed to comply with laws and ordinances relating to the contract performance;
\qquad YES

6) defaulted on its quotations or prices;

References

Name of Bonding Company: Great Anen.can 19.5. CO.
Name of Bonding Agent: Guy Hurley Blaster + Demurer, LaC
Adders of Bonding Agent: 1080 Kirts Bind Troy MI 48084 suite 500

SUBMITTED on May $\frac{\text { Ma, } 2015}{\text { Date }^{*}}$

Alyelos. houniname and Title of Signatory* Accident
*Typed or printed in ink.
Arqe/O S. Beni being duly sworn deposes and says that the information provided herein is true and sufficiently complete so as not to be misleading.
Subscribed and swom before me this $0+4$ day of Nay 2015
Notary Public,

My Commission Expires:
$1 / 2419$
IF THIS INFORMATION IS NOT SUBMITTED WITH THE SEALED BID AT THE TIME OF BID, THE BID WILL BE CONSIDERED INCOMPLETE.

LYNN A DEDENBACH
Notary Public, State of Michigan
County of Saint Clair
My Commission Expires 01-26-2019
Acing in the County of Afacomb

Friday, May 01, 2015
Name
Address
Address

Attn:

It is with great pleasure that we forward to you a brief overview of Florence Cement Company, to acquaint you with our organization. Florence Cement Company is a local contractor . performing highway roadwork and private work in southeastern Michigan for the last 49 years. Florence Cement Company is very proud of its past and continued record for service rendered, quality workmanship and timely completed projects. In January of 2001, Florence Cement acquired Detroit Concrete Products Corporation, and its 75 years of providing quality asphalt paving services throughout southeast Michigan. Today, with a combined 134 years of experience, our customers can rely on Florence Cement to provide a complete roadway or site package including excavation, utility work, concrete and asphalt paving.

Our accomplishments exemplifying these traits include the recently awarded:
2015: Michigan Concrete Pavement Association Awards of Excellence

- Metropolitan Parkway, Gratiot to Clinton River Spillway

Clinton Twp., Macomb County

- Somerset Pines

Rochester Hills, Oakland County

- Calahan Road

Roseville, Macomb County

- Cherry Hill \& Newburgh Intersection

Westland, Wayne County

- Little Mack Avenue

St Clair Shores, Macomb County

- Mohegan \& Kennesaw

Birmingham, Oakland County

2014: Michigan Concrete Pavement Association Awards of Excellence

- Wayne Road (Wahrman Rd) Extension, Sibley to Pennsylvania Huron Township, Wayne County
- Stephens Road, Gratiot Ave to Kelly Rd

Eastpointe, Macomb County
D Laketon Ave., Wood St to Getty St
Muskegon
> Dearborn CSO $\# 4$ Phase 1
City of Dearborn, Wayne County
M-29 (Busha Hwy.), Bunce Ave. / N River Rd. To I-94BL
Marysville, St Clair County

- Ryan Road - Between 16 Mile Rd and $181 / 2$ Mile Rd

Sterling Heights, Macomb County

- Bridgewater Estates, East of John R. North of Long Lake Oakland County

2013: Michigan Concrete Pavement Association Awards of Excellence

> Cass Avenue, Between Groesbeck Hwy and Gratiot Ave City of Mount Clemens, Macomb County

- Sheldon Road, Reconstruction City of Canton Township, Wayne County
- Coolidge and 12 Mile Road Intersection Improvements City of Berkley, Oakland County
- Groveland Avenue

City of Roseville, Macomb County

- 14 Mile Road Overlay, Campbell Road to I-75

City of Troy, Madison Heights, Clawson and Royal Oak Oakland County

- Detroit Metro Ground Run-Up Enclosure

City of Romulus, Wayne County
$>1-94 / \mathrm{M}-39$ Interchange Pavement Rehabilitation
City of Allen Park and Taylor, Wayne County

- Northpointe Boulevard, Hall Road to Schoenherr Road City of Utica, Macomb County
> Clear Creek, Arteva Homes, Subdivision
City of Rochester Hills, Oakland County
Some of our recently completed projects are:
2014: Asphalt Paving Projects
p Greenfield Road
Dearborn, Wayne County
> Cooley Lake Road
Waterford, West Bloomfield, \& Commerce, Oakland County
- HMA Pavement Repairs

Various Locations, Oakland County

- 2014 CDBG Pavement Repairs

Mt Clemens, Macomb County

- Various Roads Project - Selfridge ANG Base

Harrison Twp., Macomb County
2013: Asphalt Paving Projects
$>$ Livonia Asphalt Paving
Livonia, Wayne County

- Square Lake Road

City of Troy, Oakland County
> Nine Mile Road
Ferndale, Oakland County
> North Washington Avenue
Royal Oak, Oakland County

- Schlaff Avenue

Dearborn, Wayne County

2014: Concrete Paving \& Repair Projects

- Evergreen Road 8 Mile to 9 Mile

Southfield, Oakland County

- Little Mack Avenue

St Clair Shores, Macomb County

- Taxiway Golf Reconstruction - Selfridge ANG Base

Harrison Twp., Macomb County

- Baldwin Road

Auburn Hills, Oakland County
\% Metropolitan Parkway
Clinton Twp., Macomb County
\& Van Dyke Avenue
Shelby Twp., Macomb County
> 2014 Concrete Streets
Rochester Hills, Oakland County

2013: Concrete Paving \& Repair Projects

- 13 Mile Road

St Clair Shores, Macomb County

- Ryan Road

Sterling Heights, Macomb County

- M-53 - Between 34 Mile Road and Bordman Road

Bruce Township and Almont Township
Macomb and Lapeer Counties

- 1-75 Repairs - Toledo, Ohio

Toledo, Lucas County

- Bishop Airport Apron Rehabilitation

Flint, Genesee County

- Wayne Road Extension - Wayne Road Pennsylvania to Sibley

Van Buren Township, Wayne County

- Stephens Road - Gratiot to Kelly

Eastpointe, Macomb County

2012: Concrete Overlay Projects

>14 Mile Road - From Campbell Road to $1-75$
Troy, Madison Heights, Clawson and Royal Oak Oakland County

2011: Concrete Overlay Projects

- 12 Mile Road - From Evergreen to Southfield Road Lathrup Village and Southfield, Oakland County
$>$ Outer Drive - From Ford Road to N. Hines Drive Dearborn Heights, Wayne County

2009: Concrete Overlay Projects

- Hall Rd

Vreeland Road to Westland Road Woodhaven, Wayne County

Throughout the years, we have continued to work in the metropolitan area and have kept a good relationship with the Michigan Department of Transporiation, local communities, consulting engineers and private developers.

In the past few years we have completed work for:

Mr. Marcus McNamara
Orchard Hiltz \& McCliment
34000 Plymouth Rd
Livonia, MI 48150
(734) 522-6711

Westland 2011 Paving Division
Contract Amount $\$ \$ 595,375.39$

Mr. Al Loebach
City of Dearborn
4500 Maple, 3rd Floor
Dearborn, MI 48126
(313) 943-2145

Schlaff Ave
Contract Amount $\$ 464,082.35$

Mr. Alan Ostrowski
MDOT Oakland TSC
800 Vanguard Drive
Pontiac, MI 48341
(248) 451-0001

1-696 Patches
Contract Amount \$1,550,589.90
I-696 East Patches
Contract Amount \$2,685,853.25

Mr. Brent Bashaw
City of Sterling Heights
40555 Utica Rd
Sterling Heights, MI 48311
(586) 446-2720

Ryan Road
Contract Amount \$945,439.86

Mr. Steven Pangori P.E.
Anderson, Eckstein \& Westrick, Inc.
51301 Schoenherr Road
Shelby Township, MII 48315
(586) 726-1234

Stephens Rd
Contract Amount $\$ 2,828,770.13$

Mr. Martin Wininger
Wayne County Dept. of Public Services
33809 Michigan Ave
Wayne, MI 48184
(734) 595-6505

Greenfield Road
Contract Amount $\$ 1,672,589.86$

Below is a list of projects currently under contract:
Ms. Lisa New
Road Commission for Oakland County
31001 Lahser Road
Beverly Hills, MI 48025
(248) 645-2000

Northwestern Highway
Contract Amount \$2,949,431.30
Mr. Jesus Plasencia
Wayne County Dept. of Public Services
33809 Michigan Ave
Wayne, MII 48184
(734) 595-6505

Base Line Road
Contract Amount \$547,914.41
Mr. Craig Innis
MDOT Davison TSC
9495 E Potter Rd
Davison, M1 48423
(810) 653-7470

M-57 \& I-69
Contract Amount \$655,000.25

Mir. Jim Armbruster
Macomb County Department of Roads
117 S Groesbeck Hwy
Mit. Clemens, Mil 48043-2183
(586) 463-8671

Mound Road
Contract Amount $\$ 1,907,066.79$

Mr. Roy Rose, P.E.
Anderson, Eckstein \& Westrick Inc.
51301 Schoenherr Road
Shelby Township, MI 48315
(586) 726-1234

Selfridge Air National Guard Base
Contract Amount \$2,424,375.00

Mr. Tim Juidici
Orchard, Hiltz, \& McCliment 34000 Plymouth Rd
Livonia, MI 48150
(734) 522-6711

Featherstone Road
Contract Amount \$5,719,382,89
Mr. Matt Slicker
Hubbell, Roth, \& Clark, Inc.
555 Hulet Drive
P.O. Box 824

Bloomfield Hills, MI 48303
Evergreen Road North
Contract Amount \$2,179,570.35

The corporate officers maintain hands on type operation coupled with excellent office, financial and legal advisors.

PRESIDENT	Angelo S. Lanni	Director of Administration
VICE PRESIDENT	Michael Pittiglio	Director of Field Production Operations
ADMIINISTRATION	Donald W. Riddell, III	17th Season (43 Years Experience) MBA - Finance and Marketing Wayne State University
CONTROLLER	Doreen Lanni	17th Season (17 Years Experience) BGS - Accounting University of Michigan
ENGINEERS	Steven M. Lampton	Senior Project Manager $22^{\text {nd }}$ Season (22 Years Experience) B.S. Civil Engineering University of Michigan
	Steven J. Pantaleo	Senior Estimator / Project Manager $20^{\text {th }}$ Season (20 Years Experience) B.S. Civil Engineering Michigan State University
	Anthony Sarotte, P.E.	Estimator / Project Manager $15^{\text {th }}$ Season (56 Years Experience) B.S. Civil Engineering University of Detroit
	Duane McIntyre	Asphalt Paving Operations $13^{\text {th }}$ Season (40 Years Experience)
	Tony A. Cardillo	Project Manager $9^{\text {th }}$ Season (39 Years Experience)
	Michael V. Pittiglio	Project Manager $8^{\text {th }}$ Season (8 Years Experience) B.S. Construction Management Michigan State University M.B.A. University of Phoenix

	Steven J. Gregor	Estimator / Project Manager 8th Season (24 Years Experience) B.S. Civil Engineering Wayne State University
	William J. Baker	Estimator $2^{\text {nd }}$ Season (29 Years Experience) B.S. Civil Engineering University of Wisconsin Platteville
	Jordan Sirhan	Project Manager $1^{\text {st }}$ Season (3 Years Experience) B.S. Civil Engineering Western Michigan University
	Frank Prano	Estimator / Project Manager $1^{\text {st }}$ Season (39 Years Experience) B.S. Civil Engineering University of Michigan
SUPERINTENDENTS	Jeff Foliz	$35^{\text {th }}$ Season (41Years Experience)
	Fred Green	$6^{\text {th }}$ Season (31 Years Experience)
	Raymond Czewski	$3{ }^{\text {rd }}$ Season (42 Years Experience)
	Spencer Lemieur	$2^{\text {nd }}$ Season (10 Years Experience)

Florence Cement Company maintains a current Michigan Department of Transportation Prequalification certificate and is fully insured with the agency of Guy Hurley Blaser \& Heuer LLC of Troy, Michigan in providing all insurance and bonding needs.

Florence Cement Company's banking relationship for the last 49 years and currently is serviced by Comerica Bank, Florence Cement Company provides an audit financial report prepared by Grant Thornton certified public accountants.

If you should require additional information or wish to discuss any matters concerning our organization, please contact us and we will be pleased to accommodate you.

Sincerely,
Florence Cement Company

Angelo S. Lanni
President

ID No.	Yr Make	Model	Purchase	CATEGORY	APPLCATION	CLASS	Description
2300	05 Volvo	Ew180B	1/11/06	Excavator	Wheel Excavator	Equipment	VOLVO EXCAVATOR
2301	04 Komatsu	PC200-7	5/5/06	Excavator	Wheel Excavator	Equipment	KOMATSU EXCAVATOR
2302	Komatsu	PW170-6		Excavalor	Wheel Excavator	Equipment	KOMATSU EXCAVATOR
2303	Volvo	EW180C		Excavator	Wheel Excavator	Equipment	Volvo EWIBOC Excavator
2401	CASE	5905M Series I	12/9/09	Backhoe	Loader / Backhoe	Equipment	CASE 590 Backhoe
2402	CAT	420 E		Backhoe	Loader / Backhoe	Equipment	CAT 420 LOADER/BACKHOE
2403	CAT	420 E		Backhoe	Loader / Backhoe	Equpment	CAT 420 LOADER/BACKHOE
2503	CAT	D5K		Dozer	Bulldozer	Equipment	CAT DSK gulliozer
2504	CAT	D5K		Dozer	Bulldozer	Equipment	CAT D5K BULLDOZER
2505	CAT	D4K		Dozer	Bulldozer	Equipment	CAT DUK BULLDOZER
2506	CAT	D3K		Dozer	Bulidozer	Equipment	CAT DSK BULLDOZER
2600	CAT	9246		Loader	Loader	Equipment	CAT WHEEL LOADER
2601	Komatu	WA 320.6	9/15/08	Loader	Loader	Equipment	KOMATSU WHEEL LOADER
2602	Komatsu	WA200-5		Loader	Loader	Equlpment	KOMATSU WHEEL LOADER
2701	CAT	H90		Attachment	Demo Hammer mount on,	Equipment	BHL H9O Hydraulc Hammer
2702	CAT	H90		Attachment	Demo Hammer mount on	Equipment	BHL H90 Hydraulic Hammer
2800	Pav-Saver		711/03	Paver	Form Rider	Equipment	Pav-Saver 12-20
2801	Gomaco	GP 2600	5/27/03	Paver	Slip Form Paver	Equipment	GOMACO SLIPFORM PAVER
2802	CM4	SF-250	520/04	Paver	Batt placer/Spreader	Equipment	CMIFSF-250 SPIEABER
2803	Gomaco	GT6300	9/1/04	Paver	Slip Form Paver	Equipment	GOMACO PAVER 4 TRACK
2804	98 Gomaco	TC600	91/04	Paver	Texture Machine	Equlpment	GOMACO TEXTURE CURE MACHINE
2805	97. CMI	MTP 400-48	9/1/04	Paver	Material Placer	Equipment	CMI MTP 4004 MATERIAL PLACER
2806	CMI	TR 2258	7/14/05	Paver	Trimmer	Equipment	CMI TR2258 TRIMMER
2807	07 Vogele	$2116 T$	4/23/07	Paver	Asphalt Paver	Equipment	VOGELE ASPHALT PAVER
2808	CMI	$\mathrm{SF}-350$		Paver	Slip Form Paver	Equipment	CMI 4 Track Paver
2809	Gomaco	PS60		Paver	Belt Placer / Spreader	Equipment	GOMACO PS-60 SPREADER
2810	vogele	5200-2		Paver	Asphait Paver	Equipment	VOGELE ASPHALT PAVER
2811	CMI	SF-350		Paver	Slip Form Paver	Equipment	CMI 4 Track Paver
2900	04 John Deere	Gator	718/04	Paver	Profiler Buggy	Equipment	LIGHWEIGHT PROFILER
2901	John Deere	5210	11/1/04	Broom	Broom Tractor	Equipment	JOHN DEERE BRCOM TRACTOR
2902	Batt mill	PR160	5/5/06	Milling Machlne	Milling Machine	Equipment	BART MLL 160
2903	Broce	RC 350	6/27/11	Broom	Broom Tractor	Equipment	Broce RC 350 broom
2904	00 John Deere	5310	6/30/11	Broom	Broom Trator	Equipment	JOHN DEERE BRCOM TRACTOR
2905	John Deere	210LE			Landscape Tractor		JOHN DEERE LANDSCAPE TRACTOR
3000	Magnum		7/1/02	Concrete Saw	Concrete Saw	Equipment	65HP GAS CONCRETE SAW
3001	04 Dimas	FS60000	7/28/04	Concrete Saw	Concrete Saw	Equipment	57HP DIESEL CONCRETE SAW
3002	Core Cut	CC 6560		Concrete Saw	Concrete Saw	Equipment	57 HP DIESEL CONCRETE SAW
3003	Magnum	MAG65H-001 38 Sp	11/13/08	Concrete Saw	Concrete Saw	Equipment	65HP GAS CONCRETE SAW
3004	Target	65 Serles III		Concrete Saw	Concrete Saw	Equipment	65HP GAS CONCRETE SAW
3005	09 Core Cut	cc6560x1s	7/11/11	Concrete Saw	Concrete Saw	Equipment	(deut)
3006	husky	FS48000	9/11/11	Concrete Saw	Concrete Saw	Equipment	48hp yanmar DIESEL CONCRETE SAW
3007	TARGET	PRO65III		Concrete Saw	Concrete Saw	Equipment	65HP GAS CONCRETE SAW
3008	HUSKY	FS84000	4/17/14	Concrete Saw	Concrete Saw	Equipment	82 LP DIESEL CONCRETE SAW
3009	HUSKY	FS8400D	4/17/14	Concrete Saw	Concrete Saw	Equipment	$82 h$ DIESEL CONCRETE SAW
3700	TSURUMI						3" SUBMERSIBLE WATER PUMP
3701	Ingersol Rand	P185WJD	3/21/02	Air Comp	Ar Comp	Equipment	INGERSOLL SKID MOUNT COMPRESSOR
3702	Terramite		4/30/02	Paver	Roller Screed	Equlpment	ROLLER SCREED W/ $14{ }^{\prime}$ TUBS
3704	Cement Mixer						
3703	Sullivan	D185Q	8/30/02	Air comp	Air Comp	Equipment	SULUVAN AIR COMPRESSOR
3705	05 Cimine	$2300 \mathrm{M} / \mathrm{A}$	677/05	Tar Kettle	Tar Kette	Equipment	CIMLINE TAR KETTLE
3706	05 Arrow	1350	6/15/05	Concrete Breaker	Concrete Breaker	Equipment	ARROW CONCRETE BREAKER
3707			10/1/05	Generator	Stationary Gen	Equipment	COLEMAN 60 KW GENERATOR
3708			5/18/06	Misc Equip			AGL GL2500 GRADELIGHT LASER
3709			10/1/06	Gang Drill	Dowell Machine	Equipment	WOODINGS ORIL
3710	Stone	95 cm		Mixer	Concrete Mixer	Field Tools	
3712	04 Sullair	1850PQ PERK	3/6/09	Air Comp	Mount on \#146	Equipment	Air Compressor 185 CFM W/ Perkins
3713	04 Sullar	$185 \mathrm{HDPQ}-\mathrm{JO}$	3/10/09	Air Comp	Alr Compressor	Equipment	Air Compressor 185 CFM w/ John Deere
3714	09 Efflcency	XLD-820	3/11/09	Trench Box	Trench Box		8×20 Trench Box
3715	09 Efficency	XLD-420	3/11/09	Trench Box	Trench Box		4×20 Trench Box
3716	Gang Drill						
3717	Gang Drill						
3718	Gang Drill			Gang Diill	Dowell Machlne	Equipment	Hydraulic Orill Model SK47 55lb.
3719	04 Ingersol Rand			Air Comp	Alr Compressor	Equlpment	185 CFM AIR COMPRESSOR
3720	01 Ingersol Rand	P185WJOU		Air Comp	Air Compressor	Equipment	185 CFM STATIONARY AIR COMPRESSOR
3721	Sullair	185dpq-jd		Air Comp	Air Compressor	Equipment	185 CFM AIR COMPRESSOR
3722	Arrow	1350		Concrete Breaker	Concrete Breaker	Equipment	ARROW CONCRETE BREAKER
3723	Gang Drill					Equipment	
3724	06 Sullair	185 PPQ -J0	8/21/2012	Air Comp	Wheel Mounted	Equipment	06 Sultair 185CFM Air Compressor
3725	99 IR	P185EWID	8/21/2012	Alr Comp	Wheel Mounted	Equipment	99 Ingersol Rand 185CFM Air Compressor
3726	01 IR	XP185EWJ	8/21/2012	Air Comp	Mount on \#2300	Equipment	01 Ingersol Rand 185CFM Air Compressor
3727	00 IR	P185EWJ	8/21/2012	Air Comp	Spare	Equipment	00 Ingersol Rand 185CFM Air Compressor
3728	Gang Drill			Gang Drill	Dowell Machine	Equipment	3-Gang Air Orills (CP-22)
3729	Woodings		5/16/13	Gang Dirll	Dowell Machine	Equipment	5-Gang Drill
3730	Tamrock		5/16/13				5-Gang Crill
3731							
3732	Arrow	1250	5/21/13	Concrete Breaker	Concrete Breaker	Equipment	ARROW CONCRETE BREAKER
7000	01 Helco	300	8/14/01	Plant	Gransem Silo	Equipment	CEMENT SILO
7001						Equipment	DUST COLLECTOR
7002							
7003							
7004		GRANSEM SILO		Plant	Gransem Silo	Equipment	GRANSEM SILO
7005	FCC Fabrcated	OUST COLLECTOR					
7006	FCC Fabricated	DUST COLECTOR		Plant	DUST COLLECTOR	Equipment	OUST COLLECTOR
7007	Claw	DUST COLLECTOR		Plant	OUST COLECTOR	Equipment	
7008	C\&W	DUST COLLECTOR	8/7/12	Plant	OUST COLECTOR	Equlpment	

May 31, 2013
Florence Cement Company 00891 1258523 Mile Rd
Shelby Township MI 48315-2623

```
(586) 997-2666
Dear Vendor:
In accordance with our Administrative Rules we have established your numerical rating which is based on a financial rating of \(\$ \quad 50,883,000.00\), covering the classifications in the amounts stated below. This prequalification rating is effective until
April 30, 2015.
```

50883	B	- Concrete Pavement
50883	Ba	- Concrete Pavement Patching And Widening
50883	Cb	- Hot Mix Asphalt/Bituminous Paving
50883	Ea	- Grading, Drainage Structures \& Agg. Cons
1000	I	- Sodding And Seeding/Turf Establishment
50883	J	- Concrete C, C\&G, Driveways, Sidewalks
50883	K	- Sewers and Watermains
100	N 91 A	- Bridge Deck Repair
100	N 91 C	- Concrete Structure Repair
2000	N 93 A	- Cold Milling
1000	N 93 G	- Joint Repair

It will be assumed that the rating is satisfactory unless the Prequalification Committee is notified in writing to the contrary within 15 days after the bidder has been advised of the rating granted. The Department, may declare a prequalified bidder ineligible to bid at any time because of developments subsequent to prequalification which, in their opinion, would affect the responsibility of the bidder or their ability to perform the contract work.

Jill D. Mullins
Manager
Construction Contracts Section
Contract Services Division

DEPARTMENT OF TRANSPORTATION Lansing

KIRK T. STEUDLE DIRECYOR

April 29, 2015

Florence Cement Company

 00891FAX CONFMRMATION * 586-997-3966

This is in response to your request for an extension of your prequalification rating with the Michigan Department of Transportation.

Your present rating will remain in effect until June 30, 2015. If wye have not received your application postmarked by that date, your prequalification will lapse.

Reminder, please do not bind any of the Construction Prequalification Application, Financials or additional information; and keep in page order.

ce: File

[^0]: 苗 Spalding DeDecker Associates. Inc.

[^1]: EngineeringConsultants

